Carbon Sequestration in Terrestrial Ecosystems

MRCSP-Phase II

Partners

1. OSU: R. Lal, H. Blanco, U. Mishra

2. WVU: M. Sperow, L. McDonald

3. UM: B. Needleman, M. Rabenhorst,

R. Weil, R. Crew

Importance of Soil Organic

- Carbon Improves soil structure and tilth Reduces soil erosion
- Increases plant available water
- Stores plant nutrients
- Provides energy for soil fauna
- Purifies water
- Denatures pollutants
- Increases biodiversity
- Improves crop/biomass yields
- 10. Moderates climate

It makes soil a living ecosystem
It is a nations most precious natural resource

Soil C Dynamics

Soil Carbon Sink Capacity			
<u>Region</u>	Capacity (million t/yr)		
Ohio	10		
USA	300		
World	1000		

Carbon Sequestration in Agricultural Soils OSU Objectives

- I. Quantify the rate of soil organic carbon (SOC) sequestration in croplands, minesoils, and wetlands.
- II. Measure SOC pool under different land use and management systems for the whole MRCSP region.
- III. Predict and map SOC on a regional scale using pedometric tools.
- IV. Relate SOC stock to soil physical quality.

Data Sources

- Georeferenced SOC profile data from NRCS data base.
- Digital Elevation Model from USGS data base.
- Temperature and precipitation data (30 yrs) from NCDC data base.
- Land use data from USGS data base.

Results

- SOC is mainly stored in the topsoil, but in some soils more SOC is stored in subsoil.
- Areas with high subsoil SOC stock are located in regions with nearly flat soils positions (< 5%) indicating poor drainage conditions.

CHARACTERIZATION OF SOIL-PROFILE SOC SEQUESTRATION AND STRUCTURAL PROPERTIES

- Data on measured SOC stocks on a regional scale are
- Data on soil parameters to predict SOC stocks under different land use and management systems are needed.
- Impacts of SOC pool on soil physical quality are not well understood.

FUTURE WORK

- Further expansion of measured SOC database for the MRCSP region.
- Mapping estimates of SOC using pedometric tools
- Estimation of SOC using readily available soil properties.
- Development of regression models to estimate on-farm SOC pool needed for C trading in the CCX.

Minesoil – WVU Overview

- Primary objective: Estimate the amount of soil carbon that may be stored in mine sites reclaimed to grass and/or legumes.
- Soil samples from multiple mine sites where mining activities ended at different times collected
 - Assess change in soil carbon over time.
 - A mine site where reclamation activities just began is being used to assess the soil carbon content at the beginning of reclamation activities.
 - This information, combined with soil samples collected from the same site over time, enhances estimates of the amount of soil carbon storage.
- Secondary objective: Estimate the economic consequences of activities adopted to enhance carbon sequestration on all MRCSP region land uses.

Reclaimed Mine Site Descriptions

Site Name	Mylan Park	Skousen	Dent's Run	New Hill
Owner Name	Mon County School Board	Dr. J. Skousen		Patriot
Pre-Mine Land use	Forest	Forest/pasture	Forest	Ag, pasture, and forest
Mining Began	1982	1996	1999 (June)	2003 (Spring)
Mining Ended	1990	1998 (January)	2000 (October)	2005(Fall)
Coal Seam	Waynesburg	Waynesburg	Waynesburg	Waynesburg
Mining Method	Contour Mining, Front end loaders	Contour Mining, Front end loaders	Contour Mining, Front end loaders	Contour Mining, Front end loaders
Type of Overburden	70-80% Sandstone, rest is shale	~80% Sandstone, rest is shale	70-80% Sandstone, rest is shale	70-80% Sandstone, rest is shale
Reclamation Method	Backfilled, 3" topsoil, grass and legumes	Backfilled, 8" topsoil, grass and legumes	Backfilled, 3" topsoil, grass and legumes	Backfilled, 3" topsoil, grass and legumes

Grass/Pasture Mine Reclamation in MRCSP Region

Historic predominant post-mining land use is grass/pasture.

Soil Sampling at Reclaimed Mine Sites

Year	Depth	Dent's Run	Mylan Park	New Hill	Skousen
2006	0 – 6 cm	53	54	52	30
	6 – 12 cm	39	60	44	26
2007	0 – 6 cm	Soon	65	54	Soon
	6 – 12 cm	Soon	11	36	Soon
Total		92	190	186	56

Preliminary¹ Results from New Hill Site

0-6 cn 6-12 cn

	0-6 cm	6-12 cm	0-6 cm	6-12 cm
Mean SOC (Mg C ha ⁻¹)	9.4	9.7	11.2	7.6
Range (Mg C ha ⁻¹)	3.6 - 21.4	5.0 - 24.9	2.3 - 19.0	4.1 - 21.0

	Change 2006 - 2007
	Mean SOC (Mg C ha-1yr-1)
ı	1.9

Analysis of Carbon Storage in Forests on Reclaimed Mineland

- Value of carbon stored on reclaimed mine land planted to forest estimated
- Based on difference between reclamation costs to grass and forest Final grading

 - Fertilizer
 - Tree planting

- Forestry as reclamation activity offers opportunity for increased carbon storage

UM-Tidal marshes: Maximizing terrestrial carbon sequestration

- High net primary productivity and low decomposition rates
- Minimal methane production (salinity
- As sea-level rise increases, so does sequestration potential

- Sequestration potential
 Accretion = Long-term continual C
 sequestration
 The State of the Carbon Cycle Report
 (SOCCR)

 Estuarine wetlands highest ecosystem for carbon
 sequestration and generally have minimal methane
 production

Current carbon mean flux density in North American ecosystems (SOCCR report draft 3/07)

■Permafrost peatlands ■Permafrost mineral ■Mineral wetlands ■Estuarine wetlands ■Settled lands ■Coastal waters ■Forests

Research Design

- · Two tidal marsh cells
 - One newly created 2.7-acre cell (2003)

 - One natural marsh cell2008: adding newly restored cell pending restoration

Research Methods

- Teldspar marker to track vertical accretion
 Feldspar marker to track vertical accretion
 Plots sampled annually for soils and vegetation
 Organic carbon, organic matter, mineral content
 Bulk density
 Porewater: Nutrients, sulfides, salinity

 - Vegetation: cover, aboveground biomass, sp
 Instrumentation at each cell
- - Water table
- Redox potential Methane emissions

Update

- 2007 sampling completed
- 2007 sample processing and analysis ongoing
- Initiated methane emissions monitoring in collaboration with Dr. Patrick Megonigal at the Smithsonian Environmental Research Center
- Media: Front page story in Baltimore Sun 10/9/07 entitled "Can this muck save the planet?"

Kicking the Carbon Habit

- Agriculture is an important part of the solution to rehabilitating the C-civilization
- It is a truly win-win-win strategy

